Lei de Snell, distância óptica e índice de refração

(Material Suplementar) A Lei de refração de Snell segundo o Cálculo


Uma vara parcialmente submersa na água parece estar quebrada. A diferença entre os índices de refração do ar e da água é o que está por trás dessa aparência.
A Interação a seguir mostra o fenômeno:

Para o ar o índice de refração vale $1$. Por isso na Afirmação a seguir só intervém o índice de refração $k\geq 1$ do líquido. A linha quebrada que se vê satisfaz a seguinte Lei:
Afirmação (Lei de refração de Snell) : Seja $\alpha$ o ângulo de incidência da luz no líquido com índice de refração $k\geq 1$ e seja $\beta$ o ângulo do raio refratado. Então \[\sin(\alpha) = k\cdot \sin(\beta)\]

O objetivo desta Seção é dar uma justificação conceitual para a Lei de refração de Snell. Explicaremos o fenômeno como um problema de Otimização da chamada distância óptica.